Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Process Saf Environ Prot ; 152: 291-303, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1260839

ABSTRACT

COVID-19 has brought many unfavorable effects on humankind and taken away many lives. Only by understanding it more profoundly and comprehensively can it be soundly defeated. This paper is dedicated to studying the spatial-temporal characteristics of the epidemic development at the provincial-level in mainland China and the civic-level in Hubei Province. Moreover, a correlation analysis on the possible factors that cause the spatial differences in the epidemic's degree is conducted. After completing these works, three different methods are adopted to fit the daily-change tendencies of the number of confirmed cases in mainland China and Hubei Province. The three methods are the Logical Growth Model (LGM), Polynomial fitting, and Fully Connected Neural Network (FCNN). The analysis results on the spatial-temporal differences and their influencing factors show that: (1) The Chinese government has contained the domestic epidemic in early March 2020, indicating that the number of newly diagnosed cases has almost zero increase since then. (2) Throughout the entire mainland of China, effective manual intervention measures such as community isolation and urban isolation have significantly weakened the influence of the subconscious factors that may impact the spatial differences of the epidemic. (3) The classification results based on the number of confirmed cases also prove the effectiveness of the isolation measures adopted by the governments at all levels in China from another aspect. It is reflected in the small monthly grade changes (even no change) in the provinces of mainland China and the cities in Hubei Province during the study period. Based on the experimental results of curve-fitting and considering the time cost and goodness of fit comprehensively, the Polynomial(Degree = 18) model is recommended in this paper for fitting the daily-change tendency of the number of confirmed cases.

SELECTION OF CITATIONS
SEARCH DETAIL